degenerate quadratic form

degenerate quadratic form
退化二次型

English-Chinese dictionary. 2013.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Isotropic quadratic form — In mathematics, a quadratic form over a field F is said to be isotropic if there is a non zero vector on which it evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F …   Wikipedia

  • Degenerate conic — Main article: Conic section In mathematics, a degenerate conic is a conic (degree 2 plane curve, the zeros of a degree 2 polynomial equation, a quadratic) that fails to be an irreducible curve. This can happen in two ways: either it is a… …   Wikipedia

  • Degenerate form — For other uses, see Degeneracy. In mathematics, specifically linear algebra, a degenerate bilinear form ƒ(x,y) on a vector space V is one such that the map from V to V * (the dual space of V) given by is not an isomorphism. An equivalent… …   Wikipedia

  • Quadratic polynomial — In mathematics, a quadratic polynomial is a polynomial whose degree is 2. A quadratic polynomial with three terms is called a quadratic trinomial. Some examples of quadratic polynomials are ax 2 + bx + c , 2 x 2 − y 2, and xy + xz + yz… …   Wikipedia

  • quadratic equation — Math. an equation containing a single variable of degree 2. Its general form is ax2 + bx + c = 0, where x is the variable and a, b, and c are constants (a non zero). [1680 90] * * * Algebraic equation of particular importance in optimization. A… …   Universalium

  • Bilinear form — In mathematics, a bilinear form on a vector space V is a bilinear mapping V × V → F , where F is the field of scalars. That is, a bilinear form is a function B : V × V → F which is linear in each argument separately::egin{array}{l} ext{1. }B(u + …   Wikipedia

  • Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… …   Wikipedia

  • Gelfand pair — In mathematics, the expression Gelfand pair refers to a pair ( G ,  K ) consisting of a group G and a subgroup K that satisfies a certain property on restricted representations.When G is a finite group the simplest definition is, roughly speaking …   Wikipedia

  • Spinor — In mathematics and physics, in particular in the theory of the orthogonal groups (such as the rotation or the Lorentz groups), spinors are elements of a complex vector space introduced to expand the notion of spatial vector. Unlike tensors, the… …   Wikipedia

  • Classical group — For the book by Weyl, see The Classical Groups. Lie groups …   Wikipedia

  • General linear group — Group theory Group theory …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”